Published In

Physics of Plasmas

Document Type

Article

Publication Date

1-1-1994

Subjects

Argon plasmas, Plasma (Ionized gases) -- Mathematical models, Thermodynamics

Abstract

Departures from thermal (translational), ionization, and excitation equilibrium in an axisymmetric argon plasma jet have been studied by two?dimensional numerical simulations. Electrons, ions, and excited and ground states of neutral atoms are represented as separate chemical species in the mixture. Transitions between excited states, as well as ionization/recombination reactions due to both collisional and radiative processes, are treated as separate chemical reactions. Resonance radiation transport is represented using Holstein escape factors to simulate both the optically thin and optically thick limits. The optically thin calculation showed significant underpopulation of excited species in the upstream part of the jet core, whereas in the optically thick calculation this region remains close to local thermodynamic equilibrium, consistent with previous experimental observations. Resonance radiation absorption is therefore an important effect. The optically thick calculation results also show overpopulations (relative to equilibrium) of excited species and electron densities in the fringes and downstream part of the jet core. In these regions, however, the electrons and ions are essentially in partial local thermodynamic equilibrium with the excited state at the electron temperature, even though the ionized and excited states are no longer in equilibrium with the ground state. Departures from partial local thermodynamic equilibrium are observed in the outer fringes and far downstream part of the jet. These results are interpreted in terms of the local relative time scales for the various physical and chemical processes occurring in the plasma.

Description

This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

© 1994 AIP Publishing LLC. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Physics of Plasmas and may be found at: http://dx.doi.org/10.1063/1.870905

* At the time of publication John D. Ramshaw was affiliated with the Idaho National Engineering Laboratory

DOI

10.1063/1.870905

Persistent Identifier

http://archives.pdx.edu/ds/psu/7723

Included in

Physics Commons

Share

COinS