Published In

Nanoscale Research Letters

Document Type

Article

Publication Date

2-19-2013

Subjects

Hybrid solar cells -- Design and construction, Energy conversion, Photovoltaic cells -- Materials, Photovoltaic power generation, Nanostructured materials -- Electric properties

Abstract

Nanostructures composited of vertical rutile TiO₂ nanorod arrays and Sb₂S₃ nanoparticles were prepared on an F:SnO₂ conductive glass by hydrothermal method and successive ionic layer adsorption and reaction method at low temperature. Sb₂S₃-sensitized TiO₂ nanorod solar cells were assembled using the SB₂S₃-TiO₂ nanostructure as the photoanode and a polysulfide solution as an electrolyte. Annealing effects on the optical and photovoltaic properties of SB₂S₃-TiO₂ nanostructure were studied systematically. As the annealing temperatures increased, a regular red shift of the bandgap of Sb₂S₃ nanoparticles was observed, where the bandgap decreased from 2.25 to 1.73 eV. At the same time, the photovoltaic conversion efficiency for the nanostructured solar cells increased from 0.46% up to 1.47% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by the annealing treatment.

Description

Copyright 2013 Li et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI

10.1186/1556-276X-8-89

Persistent Identifier

http://archives.pdx.edu/ds/psu/9371

Included in

Physics Commons

Share

COinS