Published In

Physics of Plasmas

Document Type

Article

Publication Date

2-2014

Subjects

Equations of state, Plasma (Ionized gases) -- Mathematical models, Thermodynamics

Abstract

Approximate thermodynamic state relations for multicomponent atomic and molecular gas mixtures are often constructed by artificially partitioning the mixture into its constituent materials and requiring the separated materials to be in temperature and pressure equilibrium. Iterative numerical algorithms have been employed to enforce this equilibration and compute the resulting approximate state relations in single-temperature mixtures. In partially ionized gas mixtures, there is both theoretical and empirical evidence that equilibrating the chemical potentials, number densities, or partial pressures of the free electrons is likely to produce more accurate results than equilibrating the total pressures. Moreover, in many situations of practical interest the free electrons and heavy particles have different temperatures. In this paper, we present a generalized algorithm for equilibrating the heavy-particle and electron temperaturesand a third user-specified independent thermodynamic variable in a two-temperature plasmamixture. Test calculations based on the equilibration of total pressure vs. electron pressure are presented for three different mixtures.

Description

This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

© 2014 AIP Publishing LLC. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Physics of Plasmas and may be found at: http://dx.doi.org/10.1063/1.4866149

DOI

10.1063/1.4866149

Persistent Identifier

http://archives.pdx.edu/ds/psu/16455

Included in

Physics Commons

Share

COinS