Published In

Plos One

Document Type

Article

Publication Date

3-11-2025

Subjects

Aquatic environments

Abstract

The ability of microbial active motion, morphology, and optical properties to serve as biosignatures was investigated by in situ video microscopy in a wide range of extreme field sites where such imaging had not been performed previously. These sites allowed for sampling seawater, sea ice brines, cryopeg brines, hypersaline pools and seeps, hyperalkaline springs, and glaciovolcanic cave ice. In all samples except the cryopeg brine, active motion was observed without any sample treatment. Active motion was observed in the cryopeg brines when samples were subjected to a temperature gradient above in situ. In general, levels of motility were low in the field samples collected at temperatures <   4ºC. Non-motile cells could be distinguished from microminerals by differences in passive motion (e.g., density measured by sinking/floating), refractive index and/or absorbance, or morphology in the case of larger eukaryotes. Dramatic increases in the fraction of motile cells were seen with simple stimuli such as warming or the addition of L-serine. Chemotaxis and thermotaxis were also observed in select samples. An open-source, autonomous software package with computational requirements that can be scaled to spaceflight computers was used to classify the data. These results demonstrate the utility of volumetric light microscopy for life detection, but also suggest the importance of developing methods to stimulate cells in situ and process data using the restrictions imposed by mission bandwidth, as well as instruments to capture cell-like objects for detailed chemical analysis.

Rights

Copyright: © 2025. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

DOI

10.1371/journal.pone.0318239

Persistent Identifier

https://archives.pdx.edu/ds/psu/43599

Included in

Physics Commons

Share

COinS