Published In

Journal of Flood RIsk Management

Document Type

Article

Publication Date

6-22-2016

Subjects

Floodplain ecology, Stream restoration, Urbanization, Sediment transport, Streamflow -- Forecasting

Abstract

A study of floodplain sedimentation on a recently restored floodplain is presented. This study uses a two-dimensional hydro-morphodynamic model for predicting flow and suspended-sediment dynamics in the downstream of Johnson Creek, the East Lents reach, where the bank of the river has been reconfigured to reconnect to a restored floodplain on a 0.26 km2 (26-ha) site. The simulation scenarios include 10-, 50-, 100- and 500-year event-based deposition modelling of flood events and long-term modelling using the 64 historical flood events between 1941 and 2014. Simulation results showed that the restored floodplain significantly attenuates the upstream flood peak by up to 25% at the downstream. Results also indicated that approximately 20%–30% of sediment from the upstream is deposited on the East Lents floodplain. Furthermore, deposited sediment over the simulated period (1941–2014) is approximately 0.1% of the basin's flood storage capacity; however, the reduction in the storage does not offset the overall flood resilience impact of the flood basin. The sediment conservation at the East Lents flood basin as predicted by the model reduces the annual sediment loading of the Johnson Creek by 1% at the confluence with Willamette River, providing both improved water quality and flood resilience further downstream.

Description

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI

10.1111/ jfr3.12251

Persistent Identifier

http://archives.pdx.edu/ds/psu/19137

Share

COinS