Sponsor
This work was funded by an American Heart Association Predoctoral Fellowship, 09PRE2090004, to BJS, and an NIH/NIEHS Exploratory Research Grant, 1R21ES018940-1
Document Type
Post-Print
Publication Date
2011
Subjects
Escherichia coli -- Genetics, DNA ligases, DNA repair -- Molecular aspects, Endonucleases, Nucleic acids -- Oxidation
Abstract
Endonuclease (Endo) III and formamidopyrimidine-N-glycosylase (Fpg) are two of the predominant DNA glycosylases in Escherichia coli that remove oxidative base damage. In cell extracts and purified form, Endo III is generally more active toward oxidized pyrimidines, while Fpg is more active towards oxidized purines. However, the substrate specificities of these enzymes partially overlap in vitro. Less is known about the relative contribution of these enzymes in restoring the genomic template following oxidative damage. In this study, we examined how efficiently Endo III and Fpg repair their oxidative substrates in vivo following treatment with hydrogen peroxide. We found that Fpg was nonredundant and required to rapidly remove its substrate lesions on the chromosome. In addition, Fpg also repaired a significant portion of the lesions recognized by Endo III, suggesting that it plays a prominent role in the global repair of both purine damage and pyrimidine damage in vivo. By comparison, Endo III did not affect the repair rate of Fpg substrates and was only responsible for repairing a subset of its own substrate lesions in vivo. The absence of Endo VIII or nucleotide excision repair did not significantly affect the global repair of either Fpg or Endo III substrates in vivo. Surprisingly, replication recovered after oxidative DNA damage in all mutants examined, even when lesions persisted in the DNA, suggesting the presence of an efficient mechanism to process or overcome oxidative damage encountered during replication.
DOI
10.1016/j.jmb.2011.05.004
Persistent Identifier
http://archives.pdx.edu/ds/psu/16159
Citation Details
Schalow, Brandy J.; Courcelle, Charmain T.; and Courcelle, Justin, "Escherichia Coli Fpg Glycosylase is Nonrendundant and Required for the Rapid Global Repair of Oxidized Purine and Pyrimidine Damage In Vivo" (2011). Biology Faculty Publications and Presentations. 100.
http://archives.pdx.edu/ds/psu/16159
Supplemental Figure
Description
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Molecular Biology. Changes resulting from the publishing process. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at: http://dx.doi.org/10.1016/j.jmb.2011.05.004
© 2011, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/