Sponsor
R03 AI123464/AI/NIAID NIH HHS/United States and R03 AI133023/AI/NIAID NIH HHS/United States
Published In
Microbiology Spectrum
Document Type
Post-Print
Publication Date
4-2018
Subjects
Genetic regulation, Bacterial genetics, RNA -- Evolution
Abstract
Despite the central role of bacterial noncoding small RNAs (sRNAs) in posttranscriptional regulation, little is understood about their evolution. Here we compile what has been studied to date and trace a life cycle of sRNAs—from their mechanisms of emergence, through processes of change and frequent neofunctionalization, to their loss from bacterial lineages. Because they possess relatively unrestrictive structural requirements, we find that sRNA origins are varied, and include de novo emergence as well as formation from preexisting genetic elements via duplication events and horizontal gene transfer. The need for only partial complementarity to their mRNA targets facilitates apparent rapid change, which also contributes to significant challenges in tracing sRNAs across broad evolutionary distances. We document that recently emerged sRNAs in particular evolve quickly, mirroring dynamics observed in microRNAs, their functional analogs in eukaryotes. Mutations in mRNA-binding regions, transcriptional regulator or sigma factor binding sites, and protein-binding regions are all likely sources of shifting regulatory roles of sRNAs. Finally, using examples from the few evolutionary studies available, we examine cases of sRNA loss and describe how these may be the result of adaptive in addition to neutral processes. We highlight the need for more-comprehensive analyses of sRNA evolutionary patterns as a means to improve novel sRNA detection, enhance genome annotation, and deepen our understanding of regulatory networks in bacteria.
DOI
10.1128/microbiolspec.RWR-0004-2017
Persistent Identifier
http://archives.pdx.edu/ds/psu/25089
Citation Details
Dutcher H, Raghavan R. 2018. Origin, Evolution,and Loss of Bacterial Small RNAs. Microbiol Spectrum 6(2): doi:10.1128/microbiolspec.RWR-0004-2017.
Description
This is the author manuscript of an article accepted for publication with the American Society for Microbiology. Published with permission, the definitive version can be found on the publisher site.
Copyright © 2018 by the American Society for Microbiology.