Sex and Mitonuclear Adaptation in Experimental Caenorhabditis elegans Populations

Published In

Genetics

Document Type

Citation

Publication Date

3-1-2019

Abstract

To reveal phenotypic and functional genomic patterns of mitonuclear adaptation, a laboratory adaptation study with Caenorhabditis elegans nematodes was conducted in which independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain (ETC) mutant, gas-1. Following 60 generations of evolution in large population sizes with competition for food resources, two distinct classes of lines representing different degrees of adaptive response emerged: a low-fitness class that exhibited minimal or no improvement compared to the gas-1 mutant ancestor, and a high-fitness class containing lines that exhibited partial recovery of wild-type fitness. Many lines that achieved higher reproductive and competitive fitness levels were also noted to evolve high frequencies of males during the experiment, consistent with adaptation in these lines having been facilitated by outcrossing. Whole-genome sequencing and analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome and could be classified into a small number of functional genomic categories. A highly nonrandom pattern of mitochondrial DNA mutation was observed within high-fitness gas-1 lines, with parallel fixations of nonsynonymous base substitutions within genes encoding NADH dehydrogenase subunits I and VI. These mitochondrial gene products reside within ETC complex I alongside the nuclear-encoded GAS-1 protein, suggesting that rapid adaptation of select gas-1 recovery lines was driven by fixation of compensatory mitochondrial mutations.

Description

Copyright © 2019 by the Genetics Society of America

DOI

10.1534/genetics.119.301935

Persistent Identifier

https://archives.pdx.edu/ds/psu/28034

Share

COinS