Published In

mBio

Document Type

Article

Publication Date

2020

Subjects

Viruses -- Evolution, Genetic transformation, Genetic recombination, Virology -- Environmental aspects, DNA viruses

Abstract

The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESSDNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae. The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.

Rights

© 2020 de la Higuera et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

10.1128/mBio.01410-20

Persistent Identifier

https://archives.pdx.edu/ds/psu/33690

Share

COinS