Sponsor
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2015R1D1A1A01059097 to S.-H.J.) and by the Ministry of Science, ICT & Future Planning (NRF-2016R1A5A1010764 and NRF-2017M3A9F6029755 to H.-S.C. and NRF-2020R1F1A1072050 to S.-H.J.) and NIH grants (R01 GM087350 and R35 GM131860 to K.S.M. and R15 GM083306 to M.S.B.).
Published In
Nature Communications
Document Type
Article
Publication Date
11-2020
Subjects
RNA -- analysis, Gene expression, RNA, Ribosomes
Abstract
Opening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAPTFEα-promoter DNA ternary complexes from archaea, Thermococcus kodakarensis (Tko). The structures reveal that TFEα bridges the RNAP clamp and stalk domains to open the DNA binding cleft. Positioning of promoter DNA into the cleft closes it while maintaining the TFEα interactions with the RNAP mobile modules. The structures and photo-crosslinking results also suggest that the conserved aromatic residue in the extended winged-helix domain of TFEα interacts with promoter DNA to stabilize the transcription bubble. This study provides a structural basis for the functions of TFEα and elucidates the mechanism by which the DNA binding cleft is opened during transcription initiation in the stalk-containing RNAPs, including archaeal and eukaryotic RNAPs.
Rights
© The Author(s) 2020
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Locate the Document
DOI
10.1038/s41467-020-19998-x
Persistent Identifier
https://archives.pdx.edu/ds/psu/34377
Citation Details
Jun, S. H., Hyun, J., Cha, J. S., Kim, H., Bartlett, M. S., Cho, H. S., & Murakami, K. S. (2020). Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nature Communications, 11(1), 1-12.