Sponsor
This work was supported by a National Science Foundation Atmospheric and Geospace Sciences Postdoctoral Research Fellowship (grant no. 1231128) and by NASA Earth Science Division Award NNX13AP46G and FLAME-4, C. E. NSF grant ATM-0936321.
Published In
Atmospheric Chemistry and Physics
Document Type
Article
Publication Date
2-23-2015
Subjects
Organic compounds, Biomass burning, Gas chromatography, Atmospheric aerosols, Coniferous forests
Abstract
The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME- 4) and analyzed by two-dimensional gas chromatography– time-of-flight mass spectrometry (GC × GC–ToFMS). The sensitivity and resolving power of GC × GC–ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements for 708 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds meeting the peak selection criteria ranged from 129 to 474 among individual burns, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggesting that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, 11 sesquiterpenes were detected and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation.
DOI
10.5194/acp-15-1865-2015
Persistent Identifier
http://archives.pdx.edu/ds/psu/13396
Citation Details
Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E., & Barsanti, K. C. (2014). Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography/time-of-flight mass spectrometry. Atmospheric Chemistry and Physics Discussions, 14(16), 23237-23307.
Description
Copyright 2015 The Author(s)
This work is licensed under a Creative Commons Attribution 3.0 United States License.
Published by Copernicus Publications on behalf of the European Geosciences Union.
The Supplement related to this article is available online at doi:10.5194/acp-15-1865-2015-supplement.