Roadway Determinants of Bicyclist Exposure to Volatile Organic Compounds and Carbon Monoxide

Published In

Transportation Research Part D: Transport and Environment

Document Type

Citation

Publication Date

12-2015

Subjects

Air -- Pollution -- Health aspects -- Oregon -- Portland, Automobiles -- Motors -- Exhaust gas -- Health aspects

Abstract

Few studies have quantified relationships between bicyclist exposure to air pollution and roadway and traffic variables. As a result, transportation professionals are unable to easily estimate exposure differences among bicycle routes for network planning, design, and analysis. This paper estimates the effects of roadway and travel characteristics on bicyclist exposure concentrations, controlling for meteorology and background conditions. Concentrations of volatile organic compounds (VOC) and carbon monoxide (CO) are modeled using high-resolution data collected on-road. Results indicate that average daily traffic (ADT) provides a parsimonious way to characterize the impact of roadway characteristics on bicyclists’ exposure. VOC and CO exposure increase by approximately 2% per 1000 ADT, robust to different regression model specifications. Exposure on off-street facilities is higher than at a park, but lower than on-street riding – with the exception of a path through an industrial corridor with significantly higher exposure. VOC exposure is 20% higher near intersections. Traffic, roadway, and travel variables have more explanatory power in the VOC models than the CO model. The quantifications in this paper enable calculation of expected exposure differences among travel paths for planning and routing applications. The findings also have policy and design implications to reduce bicyclists’ exposure. Separation between bicyclists and motor vehicle traffic is a necessary but not sufficient condition to reduce exposure concentrations; off-street paths are not always low-exposure facilities.

Description

Copyright © 2015 Elsevier Ltd. All rights reserved

Locate the Document

PSU affiliates use Find in PSU library link at top.

Unaffiliated researchers can access the work here: http://dx.doi.org/10.1016/j.trd.2015.09.008

DOI

10.1016/j.trd.2015.09.008

Persistent Identifier

http://archives.pdx.edu/ds/psu/20856

Share

COinS