Mechanistic Development of CPT-Based Cyclic Strength Correlations for Clean Sand
Sponsor
Funding for this research was provided by the National Science Foundation (Award No. CMMI-1300518) and the California Department of Water Resources (Contract No. 4600009751). Funding for the Natural Hazards Engineering Research Infrastructure (NHERI) centrifuge facility at UC Davis was provided by the National Science Foundation (Award No. CMMI-1520581). Part of the funding for the laboratory testing was provided by COLCIENCIAS call 529 of 2011 doctoral loan-scholarship program.
Published In
Journal of Geotechnical and Geoenvironmental Engineering
Document Type
Citation
Publication Date
10-2019
Abstract
Mechanistic approaches to developing cone penetration test-based liquefaction triggering correlations are presented and evaluated with an application to Ottawa sand. The mechanistic approaches utilize combinations of data from undrained cyclic direct simple shear tests, dynamic geotechnical centrifuge tests with in-flight cone penetration profiles, and cone penetration simulations. Cyclic direct simple shear tests on Ottawa sand characterize the relationship between cyclic resistance ratio (CRR" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CRRCRR) and relative density (DR" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">DRDR). Relationships between cone tip resistance (qc" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">qcqc) and DR" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">DRDR are developed from geotechnical centrifuge tests and cone penetration simulations. Penetration simulations using the MIT-S1 constitutive model with three different calibrations for Ottawa sand examine the role of critical state line shape and position on simulated qc" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">qcqc values. The CRR−DR" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CRR−DRCRR−DR relationship from laboratory tests is composed with measured and simulated qC−DR" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">qC−DRqC−DR relationships via common DR" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">DRDR values to develop CRR−qc" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CRR−qcCRR−qc relationships. An alternative CRR−qc" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CRR−qcCRR−qc relationship is developed from inverse analyses of centrifuge test sensor array data (i.e., arrays of accelerometers and pore pressure sensors). The results of these different approaches are compared to case history–based correlations for clean sand and their relative merits discussed. Recommendations are provided for future application of these mechanistic approaches to developing liquefaction-triggering correlations of poorly characterized or unique soils.
Locate the Document
DOI
10.1061/(ASCE)GT.1943-5606.0002101
Persistent Identifier
https://archives.pdx.edu/ds/psu/29969
Citation Details
Moug, D. M., Price, A. B., Parra Bastidas, A. M., Darby, K. M., Boulanger, R. W., & DeJong, J. T. (2019). Mechanistic Development of CPT-Based Cyclic Strength Correlations for Clean Sand. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 04019072.
Description
©2019 American Society of Civil Engineers