Sponsor
The material presented in this article is based upon work supported by the Federal Highway Administration under Cooperative Agreement No. DTFH61-11-H-00027.
Published In
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Document Type
Pre-Print
Publication Date
3-2020
Subjects
Concrete bridges -- Floors -- Deterioration, Bridges -- Floors -- Deterioration, Concrete bridges -- Design and construction -- Statistical analysis, Concrete bridges -- United States -- Maintenance and repair -- Testing
Abstract
This study employs a random parameters binary logistic regression (LR) to characterize the impact of environmental and structural parameters on concrete highway bridge deck deterioration nationwide. Two specific gaps in the literature are addressed: (1) the use of a nationwide dataset for analysis, and (2) the implementation of a methodology to account for unobserved heterogeneity. A total of 3,262 bridge deck deterioration observations derived from the authors’ nationwide concrete highway bridge deck performance inventory (NCBDPI) database were used in this study. The deterioration rate (DR) was computed as the decrease in the concrete bridge deck condition rating (CR) over time. Bridge decks with deterioration rates (DR) below a certain threshold were categorized as the lowest deteriorated bridge decks (lowest DR) and decks with DR above a certain threshold were considered among the highest deteriorated (highest DR). The following variables were found to be significant in the final model: average daily truck traffic (ADTT), climatic region, distance from seawater, bridge deck area, age of bridge, type of design and/or construction, structural material design, deck protection, type of membrane, type of wearing surface, and maintenance responsibility. The results show that bridge decks with a high ADTT, age of bridge, bridge decks located in cold regions, and those that are close to seawater are associated with the highest DR group of bridge decks. Furthermore, the type of design and/or construction and maintenance responsibility play a role in decks being associated with highest DR.
Locate the Document
DOI
10.1061/AJRUA6.0001031
Persistent Identifier
https://archives.pdx.edu/ds/psu/33465
Citation Details
Ghonima, O., Anderson, J. C., Schumacher, T., & Unnikrishnan, A. (2020). Performance of US Concrete Highway Bridge Decks Characterized by Random Parameters Binary Logistic Regression. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(1), 04019025.
Description
This is the author’s version of a work. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.