Sponsor
Funding was provided by the National Science Foundation (Award number 1455350 and 2013280).
Document Type
Post-Print
Publication Date
4-2021
Subjects
Storm surges -- Mathematical models, Storm surges -- Effect of channel deepening on, Tides
Abstract
We combine archival research, semi-analytical models, and numerical simulations to address the following question: how do changes to channel geometry alter tidal properties and flood dynamics in a hyposynchronous, strongly frictional estuary with a landward decay in tidal amplitudes? Records in the Saint Johns River Estuary since the 1890s show that tidal range has doubled in Jacksonville, Florida. Near the estuary inlet, tidal discharge approximately doubled but tidal amplitudes increased only ~6%. Modeling shows that increased shipping channel depths from 5-6 to ~13m drove the observed changes, with other factors like channel shortening and width reduction producing comparatively minor effects. Tidal amplitude increases are spatially variable, with a maximum change 20-25 km from the estuary inlet; tidal theory suggests that increases in amplitude approximately follow , where x is the distance from the ocean and is a damping coefficient. Tidal changes are a predictor of altered surge dynamics: Numerical modeling of hurricane Irma under 1898 and 2017 bathymetric conditions confirms that both tidal and storm surge amplitudes are larger today, with a similar spatial pattern. Nonetheless, peak water levels are simulated to be larger under 1898 bathymetry. The cause is likely the record river discharge observed during the storm; as suggested by a subtidal water-level model, channel deepening since 1898 appears to have reduced the average surface slope required to drain both mean river flow and storm flows towards the ocean. Nonetheless, results suggest an increased vulnerability to storms with less river flow, but larger storm surge.
Rights
© 2021. Stefan Talke, Ramin Familkhalili, and David A. Jay
Locate the Document
The final published version is located here: https://doi.org/10.1029/2020JC016328
DOI
10.1029/2020JC016328
Persistent Identifier
https://archives.pdx.edu/ds/psu/35311
Citation Details
Published as: Talke, S. A., Familkhalili, R., & Jay, D. A. (2021). The influence of channel deepening on tides, river discharge effects, and storm surge. Journal of Geophysical Research: Oceans, e2020JC016328.
Description
This is the author’s version of a work that was accepted for publication in Journal of Geophysical Research: Oceans. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version will be published in Journal of Geophysical Research: Oceans
The data that supports this article is available in PDXScholar and can be found here: https://doi.org/10.15760/cee-data.05