Published In

Construction and Building Materials

Document Type

Pre-Print

Publication Date

2-2022

Subjects

Concrete bridges -- Floors -- Deterioration, Bridges -- Floors -- Deterioration, Concrete bridges -- Design and construction -- Statistical analysis

Abstract

Several non-destructive test (NDT) methods, namely visual inspection, hammer sounding, chain drag, impulse response testing, impact echo testing, ultrasonic (array) echo testing, and under certain conditions ground penetrating radar (GPR) are currently used to detect and estimate the extent of damage such as delaminations in reinforced concrete bridge decks. In this article, we present a self-referencing NDT method that builds on impulse response (IR) testing to detect damage using nonlinear vibration characteristics. The hypothesis is that for an undamaged deck, varying the impact force applied to a specific test point does not affect the corresponding frequency response function (FRF) for frequencies that lie within the measurement system’s linear operating range. On the other hand, the FRF for a test point that contains damage changes when the impact force is increased, indicating a nonlinear vibration response. To demonstrate that the concept works theoretically, two 2D finite element (FE) models of a bridge deck, one containing a shallow delamination, were developed and their responses to impact forces of increasing amplitude compared. IR data from an in-service bridge deck was processed and analyzed. Visual inspection results and ultra-high-pressure hydro-blasting performed on the deck for rehabilitation purposes provided an opportunity to compare the obtained results with common inspection methods and actual damage extent. Based on the observations, a new damage index, referred to as nonlinear vibration index (NVI), is proposed and shown to be sensitive to damage, including shallow delaminations that were missed by means of visual inspection.

Description

This is the author’s version of a work. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.

DOI

10.1016/j.conbuildmat.2021.125924

Persistent Identifier

https://archives.pdx.edu/ds/psu/36860

Share

COinS