Sponsor
Support for conducting centrifuge tests was provided by Grant CMS-9702744 from the National Science Foundation (NSF) and Grant SA2394JB from the Pacific Earthquake Engineering Research Center (S. Dickenson, P.I.). Support for recent analyses of the centrifuge tests was provided by Grant CMMI-1761712 from NSF and Grant 171126 from the Deep Foundations Institute (A. Khosravifar, P.I.).
Published In
Journal of Geotechnical and Geoenvironmental Engineering
Document Type
Pre-Print
Publication Date
11-2022
Subjects
Lateral loads, Piling (Civil engineering), Soil liquefaction, Bridges -- Earthquake effects, Earthquake resistant design
Abstract
An equivalent static analysis (ESA) procedure is proposed for the design of pile-supported wharves subjected to combined inertial and kinematic loads during earthquakes. The accuracy of the ESA procedure was evaluated against measurements from five large-scale centrifuge tests. The wharf structures in these tests were subjected to a suite of recorded ground motions and the associated superstructure inertia, as well as earthquake-induced slope deformations of varying magnitudes. It is shown that large bending moments at depths greater than 10 pile diameters were primarily induced by kinematic demands and can be estimated by applying soil displacements only (i.e., 100% kinematic). In contrast, the large bending moments at the pile head are primarily induced by wharf deck inertia and can be estimated by applying superstructure inertial loads at the pile head only (i.e., 100% inertial). Large bending moments at depths shallower than 10 pile diameters are affected by both inertial and kinematic loads; therefore, evaluation of pile performance should include soil displacements and a portion of the peak inertial load at the pile head that coincides with the peak kinematic loads. Ranges for inertial and kinematic load combinations in uncoupled analyses are provided for different soil profiles. The details on the back-calculated load combination factors are provided in the companion paper.
Rights
© Copyright the author(s)
DOI
10.1061/(ASCE)GT.1943-5606.0002879
Persistent Identifier
https://archives.pdx.edu/ds/psu/38473
Citation Details
Published as: Souri, M., Khosravifar, A., Dickenson, S., Schlechter, S., & McCullough, N. (2022). Pile-supported wharves subjected to inertial loads and lateral ground deformations. II: Guidelines for equivalent static analysis. Journal of Geotechnical and Geoenvironmental Engineering, 148(11), 04022091.
Description
This is the author’s version of a work that was accepted for publication in Journal of Geotechnical and Geoenvironmental Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Geotechnical and Geoenvironmental Engineering, 148(11), 04022090 and is located here: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002879