Sponsor
Support for this project was provided in part by a Miller Foundation grant to the Institute of Sustainability and Systems at Portland State University and a Portland State Research enhancement grant. D.A. Jay and S.A. Talke were supported in part by the National Science Foundation grant: Secular Changes in Pacific Tides, OCE-0929055. S.A. Talke was supported in part by National Science Foundation grant: 19th Century US West Coast Sea Level and Tidal Properties, OCE- 1155610.
Published In
Water Resources Research
Document Type
Article
Publication Date
8-7-2013
Subjects
Tides -- California -- San Francisco Bay, Tidal currents -- Flow estimation -- Mathematical models
Abstract
Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858.
DOI
10.1002/wrcr.20363
Persistent Identifier
http://archives.pdx.edu/ds/psu/10923
Citation Details
Moftakhari, H. R., Jay, D. A., Talke, S. A., Kukulka, T., & Bromirski, P. D. (2013). A novel approach to flow estimation in tidal rivers. Water Resources Research, 49(8), 4817-4832.
Description
This is the publisher's final pdf. Reproduced here with author and publisher permission.
Originally published in Water Resources Research.
Copyright 2013 by the American Geophysical Union.