Sponsor
NIH Grant 5R01-GM23037-25, NSF Grants MCB-0548602 and MCB-1101859 and NIH Grant R01 GM110588.
Published In
Journal of Biological Chemistry
Document Type
Post-Print
Publication Date
8-2015
Subjects
Escherichia coli, Ligand binding (Biochemistry), Nuclear magnetic resonance, Transfer RNA
Abstract
The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis.
DOI
10.1074/jbc.M114.631242
Persistent Identifier
http://archives.pdx.edu/ds/psu/16322
Citation Details
Harris, K. A., Bobay, B. G., Sarachan, K. L., Sims, A. F., Bilbille, Y., Deutsch, C., … Agris, P. F. (2015). NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions. The Journal of Biological Chemistry, 290(33), 20032–43. http://doi.org/10.1074/jbc.M114.631242
Description
This research was originally published in The Journal of Biological Chemistry.
Copyright 2015 American Society for Biochemistry and Molecular Biology.
This is the author manuscript. Archived with permission.