Sex in a Test Tube: Testing the Benefits of In Vitro Recombination
Sponsor
NOW and partial financial support from NASA.
Published In
Philosophical Transactions of the Royal Society B
Document Type
Citation
Publication Date
10-2016
Abstract
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of ‘extracellular recombination’ during the origin of life.
Locate the Document
DOI
10.1098/rstb.2015.0529
Persistent Identifier
http://archives.pdx.edu/ds/psu/18850
Citation Details
Pesce, D., Lehman, N., & de Visser, J. A. G. (2016). Sex in a test tube: testing the benefits of in vitro recombination. Phil. Trans. R. Soc. B, 371(1706), 20150529.