Sponsor
We thank the NIH for supporting these studies through research grant R01 AI51351.
Document Type
Post-Print
Publication Date
2008
Subjects
Methicillin resistance, Staphylococcus aureus, Lipids -- Synthesis, Carrier proteins, Bacterial proteins
Abstract
This study describes the antibacterial properties of synthetically-produced mixed aryl alkyl disulfide compounds as a means to control the growth of Staphylococcus aureus and Bacillus anthracis. Some of these compounds exerted strong in vitro bioactivity. Our results indicate that among the twelve different aryl substituents examined, nitrophenyl derivatives provide the strongest antibiotic activities. This may be the result of electronic activation of the arylthio moiety as a leaving group for nucleophilic attack on the disulfide bond. Small alkyl residues on the other sulfur provide the best activity as well, which for different bacteria appears to be somewhat dependent on the nature of the alkyl moiety. The mechanism of action of these lipophilic disulfides is likely similar to that of previously reported N-thiolated β-lactams, which have been shown to produce alkyl-CoA disulfides through a thiol-disulfide exchange within the cytoplasm, ultimately inhibiting type II fatty acid synthesis. However, the mixed alkyl-CoA disulfides themselves show no antibacterial activity, presumably due to the inability of the highly polar compounds to cross the bacterial cell membrane. These structurally simple disulfides have been found to inhibit β-ketoacyl-acyl carrier protein synthase III, or FabH, a key enzyme in type II fatty acid biosynthesis, and thus may serve as new leads to the development of effective antibacterials for MRSA and anthrax infections.
DOI
10.1016/j.bmc.2008.05.032
Persistent Identifier
http://archives.pdx.edu/ds/psu/19069
Citation Details
Turos, Edward; Revell, Kevin D.; Ramaraju, Praveen; Gergeres, Danielle A.; Greenhalgh, Kerriann; Young, Ashley; Sathyanarayan, Nalini; Dickey, Sonja; Lim, Daniel; Alhamadsheh, Mamoun M.; and Reynolds, Kevin A., "Unsymmetric Aryl–Alkyl Disulfide Growth Inhibitors of Methicillin-Resistant Staphylococcus aureus and Bacillus anthracis" (2008). Chemistry Faculty Publications and Presentations. 165.
http://archives.pdx.edu/ds/psu/19069
Description
This is the author’s version of a work that was accepted for publication in Bioorganic & Medicinal Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Bioorganic & Medicinal Chemistry, Volume 16, Issue 13, 1 July 2008, Pages 6501-6508 and is available online at: http://dx.doi.org/10.1016/j.bmc.2008.05.032