Published In
Green Chemistry
Document Type
Article
Publication Date
2012
Subjects
Supercapacitors -- Design and construction, Graphene, Oxide superconductors, Metallic oxides
Abstract
In order to improve specific capacitance and limit electrical resistance, high-quality exfoliatedgraphene decorated with transition metal (Fe, Mn, Co) oxide nanoparticles (NPs) has been successfully synthesized without the use of surfactant via a simple, general, environmentally-friendly chemical process. The specific capacitance of as-prepared graphene/Mn3O4 composite reach 239.6 F/g, when employed as the anode material in neutral NaCl electrolyte solutions (cf. 98.2 F/g for pristine graphene and 141.4 F/g for pure Mn3O4 NPs), which indicate the synergetic effects from both graphene and attached Mn3O4 NPs. Moreover, the high conductivity of graphene eliminates the need for conductive carbon black as fillers. The current density of graphene/Mn3O4 reached as high as 4.5 A g−1 which is much higher than that of graphene oxide (GO) or reduced GO-based composites. This significant enhancement of capacitance and current density was attributed to the surfactant-free approach to hybridize graphene with transition metal oxide NPs, the excellent conductivity of pristine graphene combined with its large surface area, as well as a uniform distribution of NPs on the clean surface of conductivegraphene. Thus the low-toxicity, inexpensive graphene-based hybrids show promising utility as high current density electrode materials for supercapacitor applications.
DOI
10.1039/C1GC16134B
Persistent Identifier
http://archives.pdx.edu/ds/psu/10316
Citation Details
Qian, W., Chen, Z., Cottingham, S., Swartz, N., Goforth, A., Clare, T., & Jiao, J. (2012) Surfactant-Free Hybridization of Transition Metal Oxide Nanoparticles with Conductive Graphene for High-Performance Supercapacitor. Green Chemistry, 14, 2, 371-377.
Description
This is the publisher's final pdf. Originally published in Green Chemistry