Sponsor
This work was funded by the National Science Foundation (grant DEB-0315286 to NL) and the National Aeronautics and Space Administration (grant NNX07-AU05G to NL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Published In
PLoS ONE
Document Type
Article
Publication Date
12-31-2013
Subjects
Biological fitness, RNA, Cell populations, Molecular evolution, Genetic transcription
Abstract
All individuals in an evolving population compete for resources, and their performance is measured by a fitness metric. The performance of the individuals is relative to their abilities and to the biotic surroundings – the conditions under which they are competing – and involves many components. Molecules evolving in a test tube can also face complex environments and dynamics, and their fitnessmeasurements should reflect the complexity of various contributing factors as well. Here, the fitnesses of a set of ligase ribozymes evolved by the continuous in vitroevolution system were measured. During these evolution cycles there are three different catalytic steps, ligation, reverse transcription, and forward transcription, each with a potential differential influence on the total fitness of each ligase. For six distinct ligase ribozyme genotypes that resulted from continuous evolution experiments, the rates of reaction were measured for each catalytic step by tracking the kinetics of enzymes reacting with their substrates. The reaction products were analyzed for the amount of product formed per time. Each catalytic step of the evolution cycle was found to have a differential incidence in the total fitness of the ligases, and therefore the total fitness of any ligase cannot be inferred from only one catalytic step of the evolution cycle. Generally, the ribozyme-directed ligation step tends to impart the largest effect on overall fitness. Yet it was found that the ligase genotypes have different absolute fitness values, and that they exploit different stages of the overall cycle to gain a net advantage. This is a new example of molecular niche partitioning that may allow for coexistence of more than one species in a population. The dissection of molecular events into multiple components of fitness provides new insights into molecular evolutionary studies in the laboratory, and has the potential to explain heretofore counterintuitive findings.
DOI
10.1371/journal.pone.0084454
Persistent Identifier
http://archives.pdx.edu/ds/psu/11349
Citation Details
Diaz Arenas C, Lehman, N (2013). Partitioning the fitness components of RNA populations evolving in vitro. PLoS ONE, 8(12): e84454.
Included in
Biochemistry Commons, Biophysics Commons, Cell Biology Commons, Ecology and Evolutionary Biology Commons
Description
Copyright 2013 The Authors.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The originally published Open Access article can be found at www.plosone.org