Published In
Nucleic Acids Research
Document Type
Article
Publication Date
2008
Subjects
Thermodynamics, Nucleic acid probes, DNA, Microelectrodes
Abstract
The temperature induced melting transition of a self-complementary DNA strand covalently attached at the 5' end to the surface of a gold interdigitated microelectrode (GIME) was monitored in a novel, label-free, manner. The structural state of the hairpin was assessed by measuring four different electronic properties of the GIME (capacitance, impedance, dissipation factor and phase angle) as a function of temperature from 25 degrees C to 80 degrees C. Consistent changes in all four electronic properties of the GIME were observed over this temperature range, and attributed to the transition of the attached single-stranded DNA (ssDNA) from an intramolecular, folded hairpin structure to a melted ssDNA. The melting curve of the self-complementary single strand was also measured in solution using differential scanning calorimetry (DSC) and UV absorbance spectroscopy. Temperature dependent electronic measurements on the surface and absorbance versus temperature values measured in solution experiments were analyzed assuming a two-state process. The model analysis provided estimates of the thermodynamic transition parameters of the hairpin on the surface. Two-state analyses of optical melting data and DSC measurements provided evaluations of the thermodynamic transition parameters of the hairpin in solution. Comparison of surface and solution measurements provided quantitative evaluation of the effect of the surface on the thermodynamics of the melting transition of the DNA hairpin.
DOI
10.1093/nar/gkn436
Persistent Identifier
http://archives.pdx.edu/ds/psu/11088
Citation Details
Brewood, G., Rangineni, Y., Fish, D., Bhandiwad, A., Evans, D., Solanki, R., & Benight, A. (2008). Electrical detection of the temperature induced melting transition of a DNA hairpin covalently attached to gold interdigitated microelectrodes. Nucleic Acids Research, 36(15), e98. doi:10.1093/nar/gkn436
Included in
Biochemistry Commons, Chemistry Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons
Description
This is the publisher's final PDF. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.