Sponsor
Research at the University of Pennsylvania was supported in part by National Science Foundation Grant No. DMR-MRL-92-20668
Published In
Physical Review B
Document Type
Article
Publication Date
7-1996
Subjects
Epoxy compounds, Hydrocarbons -- Properties, Phase transformations (Statistical physics), Fullerenes -- Neutrons -- Inelastic scattering
Abstract
The effect of perturbing the icosohedral symmetry of C60 by the addition of the side groups -O and -CH2 upon orientational order-disorder and glass transitions in solid C60 has been studied by a combination of high-resolution capacitance dilatometry and single-crystal x-ray and powder inelastic neutron scattering. Both fullerene derivatives C60O (epoxide) and C61H2 (6,5-annulene) are shown to undergo a sequence of transitions similar to that found in pure C60, i.e., a first-order orientational ordering transition just below room temperature followed by an orientational glass transition at lower temperatures. Although the exact origin of the glass transition in C61H2 is unclear, the glass transition in C60O has the same origin as that in C60, with a significantly higher degree of order due to a larger energy difference between pentagon and hexagon orientations. The dilatometric data at the glass transition indicate that, in contrast to C60, the ground-state orientation of both C60O and C61H2 molecules is that with the smallest volume, also demonstrating a significant influence of the side groups upon the details of the structure. A possible explanation of these differences in terms of steric effects is proposed.
Persistent Identifier
http://archives.pdx.edu/ds/psu/11175
Citation Details
Meingast, C. and Roth, G. and Pintschovius, L. and Michel, R. H. and Stoermer, C. and Kappes, M. M. and Heiney, P. A. and Brard, L. and Strongin, R. M. and Smith, A. B. (1996). Structure, dynamics, and phase transitions in the fullerene derivatives C60O and C61H2. 54(1): 124-131.
Description
This is the publisher's final PDF. Article appears in Physical Review B (http://prb.aps.org/) and is copyrighted by APS Journals (http://publish.aps.org/). The paper can be found at the following URL: http://dx.doi.org/10.1103/PhysRevB.54.124