Sponsor
This work was supported by a STARS grant from the Templeton Foundation to C.S., A.R., and N.L., the Oregon Space Grant Consortium, and the Center for Life in Extreme Environments at Portland State University.
Published In
BMC Evolutionary Biology
Document Type
Article
Publication Date
12-2014
Subjects
RNA -- Biology, Life -- Origin, Catalytic RNA
Abstract
Background: The origins of life on the Earth required chemical entities to interact with their environments in ways that could respond to natural selection. The concept of interpretation, where biotic entities use signs in their environment as proxy for the existence of other items of selective value in their environment, has been proposed on theoretical grounds to be relevant to the origins and early evolution of life. However this concept has not been demonstrated empirically.
Results: Here, we present data that certain catalytic RNA sequences have properties that would enable interpretation of divalent cation levels in their environment. By assaying the responsiveness of two variants of the Tetrahymena ribozyme to the Ca2+ ion as a sign for the more catalytically useful Mg2+ ion, we show an empirical proof-of-principle that interpretation can be an evolvable trait in RNA, often suggested as a model system for early life. In particular we demonstrate that in vitro, the wild-type version of the Tetrahymena ribozyme is not interpretive, in that it cannot use Ca2+ as a sign for Mg2+. Yet a variant of this sequence containing five mutations that alter its ability to utilize the Ca2+ ion engenders a strong interpretive characteristic in this RNA.
Conclusions: We have shown that RNA molecules in a test tube can meet the minimum criteria for the evolution of interpretive behaviour in regards to their responses to divalent metal ion concentrations in their environment. Interpretation in RNA molecules provides a property entirely dependent on natural physico-chemical interactions, but capable of shaping the evolutionary trajectory of macromolecules, especially in the earliest stages of life’s history.
DOI
10.1186/s12862-014-0248-2
Persistent Identifier
http://archives.pdx.edu/ds/psu/13290
Citation Details
Lehman, N., Bernhard, T., Larson, B. C., Robinson, A. J., & Southgate, C. C. (2014). Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life. BMC Evolutionary Biology, 14(1), 248. doi:10.1186/s12862-014-0248-2
Description
Copyright 2014 Lehman et al.; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.