Published In

Quantum

Document Type

Article

Publication Date

2020

Subjects

Quantum Reduction -- applications, Quantum theory, Quantum computers -- Testing

Abstract

A fundamental pursuit in complexity theory concerns reducing worst-case problems to average-case problems. There exist complexity classes such as PSPACE that admit worst-case to average-case reductions. However, for many other classes such as NP, the evidence so far is typically negative, in the sense that the existence of such reductions would cause collapses of the polynomial hierarchy(PH). Basing cryptographic primitives, e.g., the average-case hardness of inverting one-way permutations, on NP-completeness is a particularly intriguing instance. As there is evidence showing that classical reductions from NP-hard problems to breaking these primitives result in PH collapses, it seems unlikely to base cryptographic primitives on NP-hard problems. Nevertheless, these results do not rule out the possibilities of the existence of quantum reductions. In this work, we initiate a study of the quantum analogues of these questions. Aside from formalizing basic notions of quantum reductions and demonstrating powers of quantum reductions by examples of separations, our main result shows that if NP-complete problems reduce to inverting one-way permutations using certain types of quantum reductions.

Rights

This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.

DOI

10.22331/q-2020-08-27-312

Persistent Identifier

https://archives.pdx.edu/ds/psu/34219

Share

COinS