Published In
Journal of Vision
Document Type
Article
Publication Date
2020
Subjects
Computer algorithms, Mathematical models
Abstract
We investigate how the population nonlinearities resulting from lateral inhibition and thresholding in sparse coding networks influence neural response selectivity and robustness. We show that when compared to pointwise nonlinear models, such population nonlinearities improve the selectivity to a preferred stimulus and protect against adversarial perturbations of the input. These findings are predicted from the geometry of the single-neuron iso-response surface, which provides new insight into the relationship between selectivity and adversarial robustness. Inhibitory lateral connections curve the iso-response surface outward in the direction of selectivity. Since adversarial perturbations are orthogonal to the iso-response surface, adversarial attacks tend to be aligned with directions of selectivity. Consequently, the network is less easily fooled by perceptually irrelevant perturbations to the input. Together, these findings point to benefits of integrating computational principles found in biological vision systems into artificial neural networks.
Rights
Copyright (c) 2020 The Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Locate the Document
DOI
10.1167/jov.20.12.10
Persistent Identifier
https://archives.pdx.edu/ds/psu/34405
Citation Details
Paiton, D. M., Frye, C. G., Lundquist, S. Y., Bowen, J. D., Zarcone, R., & Olshausen, B. A. (2020). Selectivity and robustness of sparse coding networks. Journal of Vision, 20(12), 10-10.