Published In

Journal of Vision

Document Type

Article

Publication Date

2020

Subjects

Computer algorithms, Mathematical models

Abstract

We investigate how the population nonlinearities resulting from lateral inhibition and thresholding in sparse coding networks influence neural response selectivity and robustness. We show that when compared to pointwise nonlinear models, such population nonlinearities improve the selectivity to a preferred stimulus and protect against adversarial perturbations of the input. These findings are predicted from the geometry of the single-neuron iso-response surface, which provides new insight into the relationship between selectivity and adversarial robustness. Inhibitory lateral connections curve the iso-response surface outward in the direction of selectivity. Since adversarial perturbations are orthogonal to the iso-response surface, adversarial attacks tend to be aligned with directions of selectivity. Consequently, the network is less easily fooled by perceptually irrelevant perturbations to the input. Together, these findings point to benefits of integrating computational principles found in biological vision systems into artificial neural networks.

Rights

Copyright (c) 2020 The Authors

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

DOI

10.1167/jov.20.12.10

Persistent Identifier

https://archives.pdx.edu/ds/psu/34405

Share

COinS