Published In

Mathematics

Document Type

Article

Publication Date

3-12-2025

Subjects

Arrival prediction, regional function detection, embedding

Abstract

With the development of transportation networks, countless trajectory data are accumulated, and understanding human mobility from traffic data could be helpful for smart cities, urban computing, and urban planning. Extracting valuable insights from traffic data, such as taxi trajectories, can significantly improve residents’ daily lives. There are many studies on spatiotemporal data mining. As we know, arrival prediction or regional function detection encompasses important tasks for traffic management and urban planning. However, trajectory data are often mutilated because of personal privacy and hardware limitations, i.e., we usually can only obtain partial trajectory information. In this paper, we develop an embedding method to predict the next arrival using the origin–destination (O-D) pair trajectory information and point of interest (POI) data. Moreover, the embedding information contains region latent features; thus, we also detect the regional function in this paper. Finally, we conduct a comprehensive experimental study on a real-world trajectory dataset. The experimental results demonstrate the benefit of predicting arrivals, and the embedding vectors can detect the regional function in a city.

Rights

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

DOI

10.3390/math13050746

Persistent Identifier

https://archives.pdx.edu/ds/psu/43113

Plum Print visual indicator of research metrics
PlumX Metrics
  • Usage
    • Downloads: 14
    • Abstract Views: 8
  • Mentions
    • News Mentions: 1
see details

Share

COinS