Document Type

Presentation

Publication Date

3-1999

Subjects

Machine learning, Self-organizing systems -- Design and construction, Artificial intelligence

Abstract

"Learning Hardware" approach involves creating a computational network based on feedback from the environment (for instance, positive and negative examples from the trainer), and realizing this network in an array of Field Programmable Gate Arrays (FPGAs). Computational networks can be built based on incremental supervised learning (Neural Net training) or global construction (Decision Tree design). Here we advocate the approach to Learning Hardware based on Constructive Induction methods of Machine Learning (ML) using multivalued functions. This is contrasted with the Evolvable Hardware (EHW) approach in which learning/evolution is based on the genetic algorithm only.

Description

Originally presented at the Conference on Intelligent Electronics, Sendai, Japan, 14-19 March, 1999.

Persistent Identifier

http://archives.pdx.edu/ds/psu/12814

Share

COinS