Improved Passive Bottom-loss Estimation Below 10 kHz Using Arrays Deployable on Autonomous Underwater Vehicles
Published In
Journal of the Acoustical Society of America
Document Type
Citation
Publication Date
2015
Subjects
Autonomous underwater vehicles, Beamforming, Spatial resolution, Wave guides, Acoustic models
Abstract
Accurate modeling of acoustic propagation in the ocean waveguide is important for SONAR performance prediction, and requires, among other things, characterizing the reflection properties of the bottom. Recent advances in the technology of autonomous underwater vehicles (AUV) make it possible to envision a survey tool for seabed characterization composed of a short array mounted on an AUV. The bottom power reflection coefficient (and the related reflection loss) can be estimated passively by beamforming the naturally occurring marine ambient-noise acoustic field recorded by a vertical line array of hydrophones. However, the reduced array lengths required by AUV deployment can hinder the process, due to the inherently poor angular resolution. In this paper, data from higher frequencies are used to estimate the noise spatial coherence function at a lower frequency for sensor spacing beyond the physical length of the array. This results in higher angular resolution of the bottom loss estimate, while exploiting the large bandwidth available to current acquisition systems more efficiently than beamforming does. The technique, rigorously justified for a halfspace bottom, proves to be effective also on more complex bottom types, both in simulation and on experimental data.
Rights
© 2015 Acoustical Society of America
Locate the Document
http://dx.doi.org/10.1121/1.4933573
DOI
10.1121/1.4933573
Persistent Identifier
http://archives.pdx.edu/ds/psu/20904
Citation Details
Muzi, Lanfranco, Martin Siderius, and Peter L. Nielsen. "Improved passive bottom-loss estimation below 10 kHz using arrays deployable on autonomous underwater vehicles." The Journal of the Acoustical Society of America 138.3 (2015): 1763-1763.
Description
This publication is a meeting abstract only; no full text article is available.