Published In

BioMedical Engineering OnLine

Document Type

Article

Publication Date

8-2016

Subjects

Kalman filtering, Estimation theory

Abstract

Background: We describe the first automatic algorithm designed to estimate the pulse pressure variation ([Formula: see text]) from arterial blood pressure (ABP) signals under spontaneous breathing conditions. While currently there are a few publicly available algorithms to automatically estimate [Formula: see text] accurately and reliably in mechanically ventilated subjects, at the moment there is no automatic algorithm for estimating [Formula: see text] on spontaneously breathing subjects. The algorithm utilizes our recently developed sequential Monte Carlo method (SMCM), which is called a maximum a-posteriori adaptive marginalized particle filter (MAM-PF). We report the performance assessment results of the proposed algorithm on real ABP signals from spontaneously breathing subjects.

Results: Our assessment results indicate good agreement between the automatically estimated [Formula: see text] and the gold standard [Formula: see text] obtained with manual annotations. All of the automatically estimated [Formula: see text] index measurements ([Formula: see text]) were in agreement with manual gold standard measurements ([Formula: see text]) within ±4 % accuracy.

Conclusion: The proposed automatic algorithm is able to give reliable estimations of [Formula: see text] given ABP signals alone during spontaneous breathing.

Description

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

DOI

10.1186/s12938-016-0214-x

Persistent Identifier

http://archives.pdx.edu/ds/psu/18351

Included in

Biomedical Commons

Share

COinS