Comparison of Simulation and Measurements of Time-Domain Field-to-Line Coupling in TEM Cell
Published In
2014 International Symposium on Electromagnetic Compatibility
Document Type
Citation
Publication Date
1-4-2014
Abstract
This paper presents an analysis of time-domain electromagnetic (EM) field coupling to transmission lines on the printed circuit board (PCB). The time-domain 3D EM simulation of the field-to-line coupling is performed using the uniform plane wave excitation defined by broadband Gaussian pulse. The simulated time-domain response obtained at the PCB line ends can be thought of as impulse response of the field-to-line coupling system. Therefore, by convolving the simulated impulse response with the time-domain waveform of the EM field which has limited frequency range, it is possible to predict the voltage induced on the PCB lines. This approach is validated by measurements of the microstrip transmission line inserted in the transverse electromagnetic mode (TEM) cell connected to the step signal generator. The coupling of the TEM cell EM field and MS line generates the voltage signal which is measured at the line ends. The measurements are compared to the models developed by 3D EM simulator and very good agreement is obtained.
Rights
© Copyright IEEE
Locate the Document
DOI
10.1109/EMCEurope.2014.6930991
Persistent Identifier
https://archives.pdx.edu/ds/psu/25864
Citation Details
Mandic, Tvrtko; Pejcinovic, Branimir; and Baric, Adrijan, "Comparison of Simulation and Measurements of Time-Domain Field-to-Line Coupling in TEM Cell" (2014). Electrical and Computer Engineering Faculty Publications and Presentations. 431.
https://archives.pdx.edu/ds/psu/25864