Sponsor
Publication of this article in an open access journal was funded by the Portland State University Library’s Open Access Fund.
Published In
Cmc-Computers Materials & Continua
Document Type
Article
Publication Date
11-7-2021
Subjects
Logic circuits -- Design and construction, Quantum computers
Abstract
After Google reported its realization of quantum supremacy, Solving the classical problems with quantum computing is becoming a valuable research topic. Switching function minimization is an important problem in Electronic Design Automation (EDA) and logic synthesis, most of the solutions are based on heuristic algorithms with a classical computer, it is a good practice to solve this problem with a quantum processer. In this paper, we introduce a new hybrid classic quantum algorithm using Grover’s algorithm and symmetric functions to minimize small Disjoint Sum of Product (DSOP) and Sum of Product (SOP) for Boolean switching functions. Our method is based on graph partitions for arbitrary graphs to regular graphs, which can be solved by a Grover-based quantum searching algorithm we proposed. The Oracle for this quantum algorithm is built from Boolean symmetric functions and implemented with Lattice diagrams. It is shown analytically and verified by simulations on a quantum simulator that our methods can find all solutions to these problems.
Rights
Copyright (c) 2021 The Authors
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Locate the Document
DOI
10.32604/cmc.2022.020483
Persistent Identifier
https://archives.pdx.edu/ds/psu/36669
Citation Details
Gao, P., Perkowski, M., Li, Y., & Song, X. (2022). Novel Quantum Algorithms to Minimize Switching Functions Based on Graph Partitions. Computers, Materials & Continua, 70(3), 4545–4561. https://doi.org/10.32604/cmc.2022.020483