Author ORCID Identifier(s)

Martin Siderius (0000-0002-3487-6110)

Published In

The Journal of the Acoustical Society of America

Document Type

Article

Publication Date

1-1-2026

Subjects

Wind Driven Underwater Sound -- modelling, Wind Energy Soundscape modeling

Abstract

Wind-driven breaking waves generate the background sound throughout the ocean. An accurate source level for wind-driven breaking waves is needed for estimating the ambient sound levels needed for sound exposure modeling, environmental assessments, and assessing the detection performance of sonars. Previous models applied a constant roll-off of sound levels at -16 dB/decade at all wind speeds, and these models' source levels were flat at frequencies below ∼1000 Hz due to a lack of measurements. Here, we analyzed 16 long-term archival datasets with limited anthropogenic sound sources to estimate the wind-driven source level down to 100 Hz. We estimated the site-specific areic propagation loss (APL) using a ray-based model and then added the APL to the median received levels at each wind speed to obtain the source level. An equation for the areic dipole source level is provided that increases as wind speed cubed, like most other air-ocean coupling processes. The model may be used to estimate sediment properties (given a wind speed history and measured sound levels) or to estimate wind speeds (given the sediment type and measured sound levels). It is well suited for estimating ambient sound levels from wind for soundscape modeling. An open-source implementation is available.

Rights

© 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

DOI

10.1121/10.0042217

Persistent Identifier

https://archives.pdx.edu/ds/psu/44436

Publisher

Acoustical Society of America (ASA)

Share

COinS