Sponsor
This study was supported by the World Bank Group (grant # 7161880 and 7176679).
Published In
PLoS ONE
Document Type
Article
Publication Date
6-26-2018
Subjects
Biodiversity conservation -- Nepal, Community forestry -- Nepal, Carbon sequestration -- Nepal, Ecosystem services
Abstract
Approximately 15.5% of global forest is controlled by ~1 billion local people and the area under community control is increasing. However, there is limited empirical evidence as to whether community control is effective in providing critical global ecosystem services, such as biodiversity conservation and carbon storage. We assess the effectiveness of one example of community-controlled forest, Nepal’s Community Forestry Program (CFP), at providing biodiversity conservation and carbon storage. Using data from 620 randomly selected CFP and non-CFP forest plots, we apply a robust matching method based on covariates to estimate whether CFPs are associated with greater biodiversity conservation or carbon storage. Our results reveal a significant positive effect of CFP on biodiversity, which is robust against the influence of unobserved covariates. Our results also suggest a significant negative effect of the CFP on aboveground tree and sapling carbon (AGC) at the national scale (-15.11 Mg C ha-1). However, the CFP has a mixed effect on carbon across geographic and topographic regions and in forests with different canopy covers. Though there were no significant effects of the CFP on AGC at lower altitudes, in the Terai or hill regions, and under closed canopies, there were positive effects in open canopies (25.84 Mg C ha-1) at lower slopes (25.51 Mg C ha-1) and negative effects at higher altitudes (-22.81 Mg C ha-1) and higher slopes (-17.72 Mg C ha-1). Our sensitivity analysis revealed that the positive effects are robust to unobserved covariates, which is not true for the negative results. In aggregate, our results demonstrate that CFP can be an effective forest management strategy to contribute to global ecosystem services such as biodiversity, and to a lesser extent carbon.
Persistent Identifier
https://archives.pdx.edu/ds/psu/26146
Citation Details
Luintel H, Bluffstone RA, Scheller RM (2018) The effects of the Nepal community forestry program on biodiversity conservation and carbon storage. PLoS ONE 13(6): e0199526. https://doi. org/10.1371/journal.pone.0199526
Description
© 2018 Luintel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.