Published In
Remote Sensing
Document Type
Article
Publication Date
3-17-2017
Subjects
Optical radar, Glaciers, Particle image velocimetry, Global Positioning System, Climatic changes
Abstract
Understanding glacier motion is key to understanding how glaciers are growing, shrinking, and responding to changing environmental conditions. In situ observations are often difficult to collect and offer an analysis of glacier surface motion only at a few discrete points. Using light detection and ranging (LiDAR) data collected from surveys over six glaciers in Greenland and Antarctica, particle image velocimetry (PIV) was applied to temporally-spaced point clouds to detect and measure surface motion. The type and distribution of surface features, surface roughness, and spatial and temporal resolution of the data were all found to be important factors, which limited the use of PIV to four of the original six glaciers. The PIV results were found to be in good agreement with other, widely accepted, measurement techniques, including manual tracking and GPS, and offered a comprehensive distribution of velocity data points across glacier surfaces. For three glaciers in Taylor Valley, Antarctica, average velocities ranged from 0.8–2.1 m/year. For one glacier in Greenland, the average velocity was 22.1 m/day (8067 m/year).
DOI
10.3390/rs9030283
Persistent Identifier
http://archives.pdx.edu/ds/psu/20314
Citation Details
Telling, J. W., Glennie, C., Fountain, A. G., & Finnegan, D. C. (2017). Analyzing Glacier Surface Motion Using LiDAR Data. Remote Sensing, 9(3), 1-12. doi:10.3390/rs9030283
Description
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).