Published In

Science Advances

Document Type

Article

Publication Date

9-2020

Abstract

The coastal Pacific Northwest USA hosts thousands of deep-seated landslides. Historic landslides have primarily been triggered by rainfall, but the region is also prone to large earthquakes on the 1100-km-long Cascadia Subduction Zone megathrust. Little is known about the number of landslides triggered by these earthquakes because the last magnitude 9 rupture occurred in 1700 CE. Here, we map 9938 deep-seated bedrock landslides in the Oregon Coast Range and use surface roughness dating to estimate that past earthquakes triggered fewer than half of the landslides in the past 1000 years. We find landslide frequency increases with mean annual precipitation but not with modeled peak ground acceleration or proximity to the megathrust. Our results agree with findings about other recent subduction zone earthquakes where relatively few deep-seated landslides were mapped and suggest that despite proximity to the megathrust, most deep-seated landslides in the Oregon Coast Range were triggered by rainfall.

Description

Copyright 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

DOI

10.1126/sciadv.aba6790

Persistent Identifier

https://archives.pdx.edu/ds/psu/34621

Share

COinS