First Advisor
Hormoz Zareh
Date of Award
5-25-2018
Document Type
Thesis
Degree Name
Bachelor of Science (B.S.) in Mechanical Engineering and University Honors
Department
Mechanical and Materials Engineering
Subjects
Airplanes -- Wings -- Design and construction, Three-dimensional printing -- Industrial applications, Airplanes -- Wings -- Testing, Buckling (Mechanics), Fracture mechanics
DOI
10.15760/honors.543
Abstract
3D printing has allowed complex designs to be produced which were impossible to create using conventional manufacturing processes. Aircraft wings are optimized as much as possible given manufacturability considerations, but more complex geometry could provide the same strength for less weight, increasing aircraft performance. Although carbon fiber composites are some of the best known materials for conventional optimized aircraft wings, current 3D printing technology cannot produce this material. Instead, it is currently limited to metals and polymers. To determine if the more complex geometry which can be produced by 3D printing can offset the material limitations, a carbon fiber composite wing and a redesigned, 3D printed 7075-T6 aluminum wing were compared using Finite Element Analysis. The unoptimized 3D printed aluminum wing had a superior safety factor against fracture/yielding (1,109% higher) and buckling resistance (127.3% higher), but at the cost of a 23.99% mass increase compared to the optimized carbon fiber composite wing. If the 3D printed aluminum wing had been optimized to provide the same safety factor against fracture/yielding and buckling resistance as the carbon fiber composite wing, it is anticipated that the resulting design would be significantly lighter, thus increasing aircraft performance.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/25211
Recommended Citation
Rogers, Julian M., "Finite Element Analysis of 3D Printed Aircraft Wing" (2018). University Honors Theses. Paper 538.
https://doi.org/10.15760/honors.543