First Advisor
William Comer
Date of Award
Summer 2020
Document Type
Thesis
Degree Name
Bachelor of Science (B.S.) in Computer Science and University Honors
Department
Computer Science
Language
English
Subjects
Natural language processing (Computer science), Computational linguistics, Information storage and retrieval systems, Scholarly periodicals -- Russia -- Analysis
DOI
10.15760/honors.957
Abstract
The automatic extraction of keyphrases from scholarly papers is a necessary step for many Natural Language Processing (NLP) tasks, including text retrieval, machine translation, and text summarization. However, due to the different grammatical and semantic intricacies of languages, this is a highly language-dependent task. Many free and open source implementations of state-of-the-art keyphrase extraction techniques exist, but they are not adapted for processing Russian text. Furthermore, the multi-linguistic character of scholarly papers in the field of Russian computational linguistics and NLP introduces additional complexity to keyphrase extraction. This paper describes a free and open source program as a proof of concept for a topic-clustering approach to the automatic extraction of keyphrases from the largest conference on Russian computational linguistics and intellectual technologies, Dialogue. The goal of this paper is to use LDA and pyLDAvis to discover the latent topics of the Dialogue conference and to extract the salient keyphrases used by the research community. The conclusion points to needed improvements to techniques for PDF text extraction, morphological normalization, and candidate keyphrase ranking.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/33890
Recommended Citation
Wienecke, Yves, "Automatic Keyphrase Extraction From Russian-Language Scholarly Papers in Computational Linguistics" (2020). University Honors Theses. Paper 935.
https://doi.org/10.15760/honors.957
Included in
Computational Linguistics Commons, Computer Sciences Commons, Russian Linguistics Commons
Comments
The code used in this paper is free and open source, and can be accessed through GitHub.