Aging of a Fe-Mn-Al Steel Using Plasma Nitrocarburizing

Published In

Materials Performance and Characterization

Document Type


Publication Date



The aeronautics and automotive industries face increasing demands to lower fuel consumption and consequent CO2 emissions. One method of accomplishing this is to use materials with high strength/weight ratio. Alloys of steels using high manganese and aluminum shows promising results, with densities between 10% and 13% lower than those of conventional steels and high strength because of precipitation of κ-carbides. The performance of these alloys can be broadened with use of surface hardening techniques, attached to suitable heat treatment. In this work, the mechanical characteristics of conventional aging were compared with plasma nitrocarburizing in the Fe-31.2Mn-7.5Al-1.3Si-0.9C (wt. %) steel. The layers produced were characterized using optical micrograph and hardness and wear tests. The treatment produced layers with wear resistance superior to that the substrate, which also had its wear resistance increased because of aging. The increase in hardness was about 2× in the surface and 1.2× in the substrate, which resulted in wear resistances 9× higher than a substrate without any treatment.


Copyright © 1996 - 2021 ASTM. All Rights Reserved



Persistent Identifier