Sponsor
Portland State University. Department of Geography
First Advisor
Keith S. Hadley
Date of Publication
Spring 6-20-2013
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Geography
Department
Geography
Language
English
Subjects
Coarse woody debris -- Oregon -- Pacific Coast, Understory plants -- Ecology -- Oregon -- Pacific Coast, Coastal forest ecology -- Pacific Northwest, Old growth forest ecology -- Pacific Northwest
DOI
10.15760/etd.1045
Physical Description
1 online resource (vi, 91 pages)
Abstract
This research examines the relationship between understory plant diversity and logs in a Pacific Northwest (PNW) Sitka spruce (Picea sitchensis)-western hemlock (Tsuga heterophylla) old-growth, coastal forest. These forests are renowned for their high forest productivity, frequent wind storms, and slow log decomposition rates that produce unmatched accumulations of coarse woody debris (CWD) yet few studies have examined the relationship between CWD and understory vegetation ecology. My research addressed this topic by comparing understory plant census data between paired fallen log and forest floor sites (n=20 pairs). My objectives were to: 1) determine the influence of substrate type on community composition and diversity, and 2) examine successional pathways and species assemblage patterns on CWD in various stages of decomposition. To meet these objectives I employed non-metric multidimensional scaling (NMDS) ordinations and unsupervised cluster analyses to identify and compare community assemblages on both substrates. These methods revealed similar species diversity and evenness between log and forest floor sites with compositional differences within and between substrates corresponding to habitat availability for colonization and light and moisture gradients. My results also suggest understory successional pathways related to decay class and characterized by an initial abundance of bryophytes, forbs, and seedlings followed by woody shrubs. Understory communities developing on logs also experienced increasing diversity, evenness, and divergence from forest floor communities consistent with log decomposition. These results differ from findings for boreal forests that reveal increasing similarity between substrate communities with increasing decay class. Recommendations for future research include the employment of a more robust sample size and direct measurements of environmental variables. Additional comparator studies are also needed to confirm the effects of forest type and decomposition on the relationship between CWD and forest understory communities. This study demonstrates how fine-scale wind disturbance fosters biodiversity through the creation of CWD substrate. My results and future research are essential for the development of silvicultural models designed to promote biodiversity in PNW coastal forests.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/9863
Recommended Citation
Mcdonald, Shannon Lee, "Understory Diversity and Succession on Coarse Woody Debris in a Coastal, Old-growth Forest, Oregon" (2013). Dissertations and Theses. Paper 1045.
https://doi.org/10.15760/etd.1045
Included in
Other Forestry and Forest Sciences Commons, Physical and Environmental Geography Commons