Sponsor
Portland State University. Department of Electrical and Computer Engineering
First Advisor
Marek A. Perkowski
Date of Publication
1-1-2010
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Electrical and Computer Engineering
Department
Electrical and Computer Engineering
Language
English
Subjects
Quantum computers, Quantum electronics, Logic circuits
DOI
10.15760/etd.129
Physical Description
1 online resource (xxiiii, 297 p.)
Abstract
The computing power in terms of speed and capacity of today's digital computers has improved tremendously in the last decade. This improvement came mainly due to a revolution in manufacturing technology by developing the ability to manufacture smaller devices and by integrating more devices on a single die. Further development of the current technology will be restricted by physical limits since it won't be possible to shrink devices beyond a certain size. Eventually, classical electrical circuits will encounter the barrier of quantum mechanics. The laws of quantum mechanics can be used for building computing systems that work on the principles of quantum mechanics. Thus quantum computing has drawn the interest of many top scientists in the world. Ion Trap technology is one of the most promising prospective technologies for building quantum computers. This technology allows the placement of qubits - ions in 1-, 2- and 3-dimensional regular structures. Development of efficient algorithms and methodologies for designing reversible quantum circuits is one of the most rapidly growing areas of research. All existing algorithms for synthesizing quantum circuits use multi-input Toffoli gates that have very high quantum cost in terms of electromagnetic pulses. They also do not use the opportunity of regular structures provided by the Ion Trap technology. In this thesis I present a completely new methodology for synthesizing quantum circuits that use only small (3x3) Toffoli gates and new gate families that have similar properties and use regular structures. These methods are for both binary and multiple valued quantum circuits. All my methods require adding some limited number of ancilla qudits [sic] but dramatically decrease the quantum cost of the synthesized circuits. I also present a new family of gates called "D-gates" that allows synthesis of quantum and reversible logic functions using structures called layered diagrams. The designed circuits can be directly mapped to a Quantum Logic Array implemented using the Ion Trap technology.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/6940
Recommended Citation
Shah, Dipal, "Design of Regular Reversible Quantum Circuits" (2010). Dissertations and Theses. Paper 129.
https://doi.org/10.15760/etd.129
Comments
Portland State University. Dept. of Electrical and Computer Engineering