Sponsor
Portland State University. Environmental Sciences and Resources Ph. D. Program
First Advisor
Robert M. Scheller
Date of Publication
Winter 1-9-2014
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Environmental Sciences and Resources
Department
Environmental Sciences and Resources
Language
English
Subjects
Forest management -- Michigan, Forest management -- Minnesota, Forests and forestry -- Climatic factors -- Michigan, Forests and forestry -- Climatic factors -- Minnesota, Forest biodiversity
DOI
10.15760/etd.1550
Physical Description
1 online resource (ix, 198 pages)
Abstract
Climate change is expected to drastically change the environmental conditions which forests depend. Lags in tree species movements will likely be outpaced by a more rapidly changing climate. This may result in species extirpation, a change in forest structure, and a decline in resistance and resilience (i.e., the ability to persist and recover from external perturbations, respectively). In the northern Great Lakes region of North America, an ecotone exists along the boreal-temperate transition zone where large changes in species composition exist across a climate gradient. Increasing temperatures are observed in the more southern landscapes. As climate change is expected to substantially affect mid-continental landscapes, this region is especially vulnerable to climate change. My research assessed the effects of climate change under business as usual (BAU) management as well as alternative management strategies. To do so, I simulated forest change in two landscapes (northeastern Minnesota and northern lower Michigan) under three climate change scenarios (current climate, low emissions, and high emissions), and four management scenarios (BAU, modified silviculture, expanded reserves, and climate suitable planting) with a spatially-explicit forest simulation model from year 2000 to year 2150. Specifically, I explored how climate change would affect relationships between tree species diversity and productivity; how expanded reserves and modified silviculture may affect aboveground biomass (AGB) and species diversity; how climate suitable planting may affect functional diversity, and AGB; and how alternative management may affect the resistance and resilience of forests to multiple disturbances interacting with climate change.
Under the BAU management scenario, I found that current and low emissions climate scenarios did not affect the relationship between species diversity and productivity; however, under a high emissions climate scenario, a decline in simulated productivity was coupled with a stronger positive relationship between diversity and productivity. Under the high emissions climate scenario, overall productivity declined in both landscapes with specific species declines projected for boreal species such as balsam fir (Abies balsamea) and black spruce (Picea mariana). Under alternative management scenarios, I simulated a limited ability to increase tree species and functional diversity, AGB, and net primary productivity under climate change. The limits of management were especially apparent under the high emissions climate scenario. In a novel approach to measuring resilience, I plotted the recovery of both initial species composition and AGB to stochastic fire events for each simulation. This approach assessed both a general response (i.e. AGB) with a more specific response (i.e. species composition). My results suggest that climate change will reduce the resilience of northern Great Lake forest AGB and species composition and that management effects will be largely outweighed by the declines expected due to climate change. My results highlight the necessity to consider even more innovative and creative solutions under climate change (e.g., planting species from even further south than I simulated).
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/10573
Recommended Citation
Duveneck, Matthew Joshua, "Managing for Resistance and Resilience of Northern Great Lakes Forests to the Effects of Climate Change" (2014). Dissertations and Theses. Paper 1551.
https://doi.org/10.15760/etd.1550