Sponsor
Portland State University. Department of Physics
First Advisor
Pavel Smejtek
Term of Graduation
Summer 1994
Date of Publication
7-11-1994
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Physics
Department
Physics
Language
English
Subjects
Adsorption, Ions, Membranes (Technology), Membranes (Biology), Electrophoresis
DOI
10.15760/etd.1794
Physical Description
1 online resource (2, xii, 92 pages)
Abstract
In this study, electrophoretic mobilities of native and two types of trypsin digested sarcoplasmic reticulum vesicles have been determined by microelectrophoresis using a Doppler Electrophoretic Light Scattering Analyzer to investigate the influence of hydrodynamic drag, caused by the Ca2+, Mg2+ -ATPase protruding from the surface of native sarcoplasmic reticulum vesicles. After the prolonged digestion (protein:trypsin ratio of 20 for 3 hours at 25°C), the ATPase was cleaved and removed from the sarcoplasmic reticulum membrane as shown with SDS gel electrophoresis and an ATPase activity assay. Ionic strength and pH dependence of mobility showed a nearly pH independent increase in initial surface charge density after prolonged digestion. Adsorption isotherms for native, short (protein:trypsin ratio of 200 for 2 minutes at 25°C), and prolonged digested sarcoplasmic reticulum vesicles were recorded for TPhP+ (tetraphenylphosphonium), PCP- (pentachlorophenol), and Ca2+, and fitted to the Langmuir adsorption model. The most important result from the adsorption isotherms is that adsorption of the three ions did not increase significantly after prolonged digestion. From this it can be concluded that hydrodynamic drag does not have a measurable influence on electrophoretic mobility of sarcoplasmic reticulum vesicles and therefore cannot account for the big differences in mobility between sarcoplasmic reticulum vesicles and a comparable artificial membrane system (phosphatidylcholine/phosphatidylserine liposomes), which were observed in this lab earlier.
A thermodynamic analysis of adsorption was done for PCP- adsorption to phosphatidylcholine liposomes, TPhP+ adsorption to phosphatidylcholine liposomes, and TPhP+ adsorption to sarcoplasmic reticulum vesicles, by recording adsorption isotherms at 10°C, 25°C, 40°C, and 55°C. The adsorption of PCP- to phosphatidylcholine liposomes was clearly driven by enthalpy. In contrast, the adsorption of TPhP+ to phosphatidylcholine liposomes and sarcoplasmic reticulum vesicles was characterized by a positive enthalpy and a still larger negative entropy term. The thermodynamic analysis of ion adsorption shows that the driving forces of adsorption are very similar for sarcoplasmic reticulum vesicles and the chosen artificial membrane system (phosphatidylcholine liposomes) in spite of the significant lower adsorption of biological membranes compared to artificial membrane systems.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
https://archives.pdx.edu/ds/psu/12047
Recommended Citation
Schilling, Andreas, "Electrophoretic Studies of Ion Adsorption to Sarcoplasmic Reticulum and Phosphatidylcholine Membranes" (1994). Dissertations and Theses. Paper 1795.
https://doi.org/10.15760/etd.1794
Comments
If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL.