First Advisor

Michael Bartlett

Date of Publication

Spring 5-22-2014

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Biology

Department

Biology

Language

English

Subjects

Transcription factors -- Effect of temperature on, Genetic transcription, Archaebacteria

DOI

10.15760/etd.2020

Physical Description

1 online resource (vi, 52 pages)

Abstract

In Pyrococcus furiosus (Pfu), a hyperthermophile archaeon, two transcription factor Bs, TFB1 and TFB2 are encoded in the genomic DNA. TFB1 is the primary TFB in Pfu, and is homologous to transcription factor IIB (TFIIB) in eukaryotes. TFB2 is proposed to be a secondary TFB that is compared to TFB1, TFB2 lacks the conserved B-finger / B-reader / B-linker regions which assist RNA polymerase in transcription start site selection and promoter opening functions respectively. P. furiosus, like all Archaea, encodes a single transcription factor E (TFE), that is homologous to the N-terminus of transcription factor II E (TFIIE) α subunit in eukaryotes. TFE stabilizes the transcription bubble when present, although it is not required for in vitro transcription. In this study, in vitro transcription is used to reveal how TFB2 responds to different temperature (65 °C, 70 °C, 75 °C, 80 °C, and 85 °C) at promoters for three different kinds of gene: non-temperature responsive, heat-shock induced, and cold-shock induced in the absence or presence of TFE. The activity of transcription complexes formed by TFB2 is always lower than by TFB1 in all temperatures and promoters. However, with heat-shock gene promoters, the activity of transcription complexes formed by TFB2 increases more than those formed with TFB1 with increasing temperatures. The temperature-dependent activities of TFB1 and TFB2 are similar with the non-temperature responsive gene promoter. With the cold-shock gene promoter, the activity of transcription complexes formed by both TFB1 and TFB2 has the highest activity in lower temperatures. When TFE is present, the activity of transcription complexes formed by TFB2 is enhanced with heat-shock gene promoters particularly at lower temperatures, and makes TFB2 behave more similarly to TFB1. With the non-temperature responsive gene promoter, TFB2 still behaves similarly to TFB1 when TFE is present. However, with the cold-shock gene promoter, most of the activity of transcription complexes formed by TFB1 and TFB2 remain the same, but only the activity of TFB1 decreases at 75 °C. The results suggest that TFB2 may play a role in heat-shock response through its increased sensitivity to temperature, and that TFE can modulate this temperature response.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

http://archives.pdx.edu/ds/psu/12803

Included in

Biology Commons

Share

COinS