Sponsor
Portland State University. Department of Computer Science
First Advisor
Tim Sheard
Date of Publication
Fall 12-16-2014
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.) in Computer Science
Department
Computer Science
Language
English
Subjects
Programming languages (Electronic computers), Lambda calculus, Curry-Howard isomorphism
DOI
10.15760/etd.2086
Physical Description
1 online resource (xiii, 347 pages)
Abstract
Two major applications of lambda calculi in computer science are functional programming languages and mechanized reasoning systems (or, proof assistants). According to the Curry--Howard correspondence, it is possible, in principle, to design a unified language based on a typed lambda calculus for both logical reasoning and programming. However, the different requirements of programming languages and reasoning systems make it difficult to design such a unified language that provides both. Programming languages usually extend lambda calculi with programming-friendly features (e.g., recursive datatypes, general recursion) for supporting the flexibility to model various computations, while sacrificing logical consistency. Logical reasoning systems usually extend lambda calculi with logic-friendly features (e.g., induction principles, dependent types) for paradox-free inference over fine-grained properties, while being more restrictive in modeling computations.
In this dissertation, we design and implement a language called Nax that embraces benefits of both. Nax accepts all recursive datatypes, thus, allowing the same flexibility of defining recursive datatypes as in functional languages. Nax supports a number of Mendler-style recursion schemes that can express various kinds of recursive computations and also guarantee termination. Nax supports term-indexed types to support specifications of fine-grained properties. In addition, Nax supports a conservative extension of Hindley--Milner type inference.
The theoretical contributions of this dissertation include theories for Mendler-style recursion schemes and term-indexed types, which we developed to establish strong normalization and logical consistency of Nax.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/13198
Recommended Citation
Ahn, Ki Yung, "The Nax Language: Unifying Functional Programming and Logical Reasoning in a Language based on Mendler-style Recursion Schemes and Term-indexed Types" (2014). Dissertations and Theses. Paper 2088.
https://doi.org/10.15760/etd.2086