First Advisor

Marek Perkowski

Date of Publication

Fall 12-19-2014

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Electrical and Computer Engineering

Department

Electrical and Computer Engineering

Language

English

Subjects

Quantum computing, Algebra, Boolean, Logic circuits, Many-valued logic

DOI

10.15760/etd.2107

Physical Description

1 online resource (vii, 71 pages)

Abstract

As quantum computers edge closer to viability, it becomes necessary to create logic synthesis and minimization algorithms that take into account the particular aspects of quantum computers that differentiate them from classical computers. Since quantum computers can be functionally described as reversible computers with superposition and entanglement, both advances in reversible synthesis and increased utilization of superposition and entanglement in quantum algorithms will increase the power of quantum computing.

One necessary component of any practical quantum computer is the computation of irreversible functions. However, very little work has been done on algorithms that synthesize and minimize irreversible functions into a reversible form. In this thesis, we present and implement a pair of algorithms that extend the best published solution to these problems by taking advantage of Product-Sum EXOR (PSE) gates, the reversible generalization of inhibition gates, which we have introduced in previous work [1,2].

We show that these gates, combined with our novel synthesis algorithms, result in much lower quantum costs over a wide variety of functions as compared to our competitors, especially on incompletely specified functions. Furthermore, this solution has applications for milti-valued and multi-output functions.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Persistent Identifier

http://archives.pdx.edu/ds/psu/13236

Share

COinS