Sponsor
Portland State University. Department of Earth Sciences
First Advisor
Marvin H. Beeson
Date of Publication
4-8-1974
Document Type
Thesis
Degree Name
Master of Science (M.S.) in Geology
Department
Geology
Language
English
Subjects
Bauxite -- Oregon -- Columbia County -- Analysis, Bauxite -- Washington (State) -- Wahkiakum County -- Analysis
DOI
10.15760/etd.2132
Physical Description
1 online resource (ix, 87 pages) : illustrations
Abstract
Wet chemical analysis and instrumental neutron activation analysis (INAA) were performed on a suite of samples from three residual ferruginous bauxite profiles in the study area for abundances of Al2O3,
SiO2, Fe2O3, Ti O2, Na, Sc, Hf, Cr, Co, La, Sm, Yb, Lu, and Th. In addition a mineralogical study accompanied this research, using petrographic, differential thermal, and x-ray diffraction techniques. In each profile, the relative mobility of these elements were calculated by empirical methods for comparison with the parent rock and mineral properties in the saprolite.
This study indicates that the first original constituent of the basalt to decompose under the influence of weathering is interstitial glass. The second phase results in the decomposition of plagioclase and pyroxene. Plagioclase alters mainly to kaolinite and metahalloysite. Pyroxene and basaltic glass alters mainly to nontronite, hematite, limonite, and amorphous clay. Opaques remain nearly unaltered. The low grade ferruginous bauxite ore is not derived solely from basalt, but also forms by weathering of younger sedimentary strata that overlie the basalt flows of the Columbia River Group. In general, components that are progressively depleted under the influence of weathering are Si02, Na, La, Sm, and Lu; these losses result in greater concentration of AlO3, Fe2O3, TiO2, Sc, Cr, Th, and Hf. Cobalt behaves erratically. There seems to be no predictable relationship between the ratios of rare earth elements in ferruginous bauxite and the parent rock. In the most weathered zone, Fe2O3, TiO2, Al2O3, Sc, Hi, Cr, and Th are enriched. Na, SiO2, Sm, and Lu are depleted relative to the parent rock. Trace elements associated with iron-rich pisolites are Lu, Yb, Th, and Co. Only Th is associated with gibbsite.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Persistent Identifier
http://archives.pdx.edu/ds/psu/13312
Recommended Citation
Jackson, Ronald Laverne, "A Mineralogical and Geochemical Study of the Ferruginous Bauxite Deposits in Columbia County, Oregon, and Wahkiakum County, Washington" (1974). Dissertations and Theses. Paper 2133.
https://doi.org/10.15760/etd.2132