First Advisor

Joann S. Loehr

Term of Graduation

Summer 1974

Date of Publication

9-18-1974

Document Type

Thesis

Degree Name

Master of Science (M.S.) in Chemistry

Department

Chemistry

Language

English

Subjects

Organometallic compounds -- Spectra, Zinc, Raman spectroscopy

DOI

10.15760/etd.2164

Physical Description

1 online resource (v, 40 pages)

Abstract

Cobalt-substituted carboxypeptidase and carbonic anhydrase were chosen as candidates for resonance Raman spectroscopy because they possess visible absorption due to the Co(II)-protein complex. However, no evidence for resonance-enhanced peaks due to the cobalt-containing chromophore was found with laser excitation near the visible absorption bands (514.5 nm) or closer to the ultraviolet absorption bands (457.9nm).

Arsanilazocarboxypeptidase and model azotyrosine compounds were selected for a Raman spectroscopic investigation because they have intense absorption bands in the visible region. All of these substances yielded similar resonance Raman spectra. Although there was no evidence for specific zinc-ligand vibrations, shifts in vibrational frequencies of the azotyrosine chromophore could be used as proof of zinc complexation. The protonated azotyrosine model compound was found to have the phenoxy group hydrogen bonded to the azo group, forming a six-membered ring. Replacement of the proton by zinc resulted in the zinc atom being bound only to the phenoxy group. In arsanilazocarboxypeptidase the azotyrosine at position 248 in the polypeptide chain was found to have a structure similar to the protonated model compound, a six-membered ring with zinc bridging the phenoxy group and the azo group. This gave further proof that Tyr 248 is close to the zinc atom in the native enzyme, even in the absence of substrate.

Rights

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Comments

If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to pdxscholar@pdx.edu and include clear identification of the work, preferably with URL.

Persistent Identifier

http://archives.pdx.edu/ds/psu/13398

Included in

Chemistry Commons

Share

COinS